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 Introduction

 Conclusions

 Results

 Plasma–vacuum depositions allow the direct deposition of functional materials on untreated paper substrates at low power consumption
 Energy efficient, solventless and industrially scalable synthetic procedures.
 As paper is highly flexible and foldable, and due to the fair adhesion of the films in the cellulose microstructure, manufactured devices are

able to adapt to any kind of deformations, even those produced by an airflow generating an output signal.
 Synthetic protocol provides robust systems mechanically stable after thousands of successive activation tests.
 New alternative path to fabricate flexible and durable paper-based self-powered sensors and piezoelectric nanogenerators. Besides, the

transparency of the functional surfaces allow to implement the devices on printed paper.

The increasing demand for powering wireless devices has
spurred the development of energy harvesting solutions in recent years, such as piezoelectric,
pyroelectric, triboelectric, and thermoelectric nanogenerators. These systems can convert ambient
kinetic or thermal energy into electrical energy, which can then be used to power a small energy
storage system or the device itself [1]. Paper, as one of the most common materials in daily life, has
gained interest as a potential substrate for flexible electronics [2] due to its advantages of being
lightweight, portable, disposable, recyclable, biodegradable, and easy to fabricate.
In this communication, we show how to use plasma-assisted vacuum deposition [3] to fabricate
mechanically sensitive paper-based sensors and energy harvesting systems [4]. Two configurations
have been designed to produce these completely bendable and foldable devices, depending on
their contact architecture (i.e., laterally or top-bottom). Polymeric coatings have been successfully
developed to protect the functional material and the paper substrate, and also to act as a dielectric
layer in the devices. Different devices with functional polycrystalline ZnO piezoelectric surfaces were
manufactured and characterized, and their electrical outputs were analyzed and compared under
several activation conditions. As examples of application, signals were recorded from the devices as
they were moving within the air turbulences produced by a fan and also under handwriting.
The procedure followed for the fabrication of the functional surfaces is mainly based on vacuum and
plasma depositions, such as Plasma Enhanced Chemical Vapor Deposition (PECVD) and
sputtering. These deposition techniques allow the integration of multiple devices using a one-reactor
synthetic process and are scalable to large area deposition. The use of inexpensive paper
substrates, simple geometries, and efficient and industrially scalable deposition processes has the
potential to lead to low-cost devices.

 Experimental

 ZnO growth simulations

 References

 Direct depositions at room temperature.
 Dual roughness due to paper fibers and granular nanostructure.
 Au conformal thin film (a-b). Directly deposited on the paper and

PMMA. Film thickness ~100 nm - Sheet resistance < 3 Ω/sq
 ZnO polycrystalline wurtzite by PECVD (c-h). Conformal layer

showing paper fiber structure at microscale (c). Randomly
oriented grains at nanoscale (e). At the meso-scale (d), the
morphology of the thin film present globular formations at the
skullcaps of the coated nanofibers (d, f) and hand-fan like cross
sections (g-h).

 ZnO texturization changes due to the effect of the Au interface
favoring (101) cristal plane (m). UV-Vis-NIR characterization on
fused silica substrate (n) shows the high transparency of ZnO
films.

 PMMA conformal thin film (i-l) by spin coating improves
mechanical stability, distributes strain and provides water
resistance (see below).
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 SEM characterizations
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 ZnO DRX analysis
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 Kinetic Monte Carlo simulations [5].
 Crystalline texture and morphology of ZnO

wurtzite highly dependent on the substrate and
interfacial topography.

 By increasing the deposition rate it is possible
to reduce the dependence of the film
nanostructure on the substrate morphology.
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